我們與鋼鐵人助理 Jarvis 的距離有多遠 - 工程師

Odelette avatar
By Odelette
at 2022-05-27T00:39

Table of Contents

我們與鋼鐵人助理 Jarvis 的距離有多遠?專訪臺大資工系陳縕儂副教授

https://buzzorange.com/techorange/2022/05/24/siri-and-jarvis/

姚荏富

【我們為什麼挑選這篇文章】現代人常常會利用智慧語音助理協助完成一些簡單指令
,許多影迷也期盼有一天能讓鋼鐵人的助理 Jarvis 在現實生活中出現;不過,我們究竟
離 Jarvis 有多遠?

下文專訪臺大資工系陳縕儂副教授,替我們解答「自然語言處理」包含哪些技術,而
資工系又需要具備哪些人才特質呢?(責任編輯:莊彙翌)

近年來因為人工智慧、大數據、區塊鍊等應用科技快速發展,以及 Google 等科技公司大
舉來到臺灣進駐並招聘大量軟體工程師,臺灣頂大的資工科系成為超熱門志願。不過大家
對資工系的印象就是要學寫程式,也就是俗稱的 Coding,但 Coding 在解決什麼問題?

今天我們訪問了臺大資工系的陳縕儂副教授,從老師的專業「自然語言處理」(Natural
Language Processing,縮寫 NLP)做切入,來帶大家了解資工系究竟在解決什麼問題。

讓 AI 聽得懂人話,就是「自然語言處理」

陳縕儂老師的機器智慧與理解實驗室,主要是針對語言處理及對話系統相關技術進行研發
,藉由機器學習技術,透過資料讓機器自動學習,理解人類語言並且進行適當的互動,目
標是希望能讓機器的智能比肩人類,甚至超越人類。

「自然語言處理」是資工領域中的一個分支,名字聽起來很抽象,但其實這項學門的目標
就是讓電腦可以「聽懂」人類說的話、「理解」語意並給予「回應」,就像鋼鐵人電影中
的 AI 助理 Jarvis,鋼鐵人只要說如常說話就可以下達指令,讓 Jarvis 協助生活中各
種大小事。

不過理想很飽滿現實卻很骨感,要做到像 Jarvis 這樣有求必應的 AI 助理並不容易,目
前市面上的智慧助理如 Apple Siri、Google Assistant 及 Amazon Alexa 都已經隨著
3C 產品普及化了,但很多時候它們仍會說:「很抱歉,我聽不懂你的意思。」

可見,從 Siri 到到 Jarvis 仍有很長的一段路要走,但為什麼這是條漫漫長路?——歡
迎來到「自然語言處理」的思考領域。

從「聽懂」到「回應」,AI 必須克服多項關卡

大家可以想像一下,今天要跟一個 AI 互動,通常是透過語音或者文字來下達指令,接著
AI 就會協助我們完成特定的任務,並解決特定的問題。

在這個過程中,有四個主要的環節必須克服,分別是語音辨識 (Automatic Speech
Recognition; ASR)、語意理解 (Natural Language Understanding; NLU)、對話決策
(Dialogue Management)、以及語言生成 (Natural Language Generation; NLG),
說得白話一點,就是接收你講的話、翻譯成 AI 能理解的指令、要如何處理指令,以及怎
麼把回應翻譯成人類能聽懂的聲音或文字。

在這四個環節裡都有相當複雜的問題需要去解決,譬如語音辨識,在技術上通常是將語音
訊號直接轉換成文字,讓 AI 去理解,但在將音訊輸入的過程中,就必須要排除掉我們口
語中會用的「嗯」、「啊」、「喔」等贅字或不自然的停頓,又或者是新創的流行語、方
言、口音……等等的問題必須先解決,才能讓 AI 真的能聽懂人類的自然語言。

在「語意理解」上,要讓 AI 去分析語言或文字的脈絡、理解關鍵字,再找出對應的資料
(搜尋資料庫);而「對話決策」更是困難,前面理解了人類的語言或文字表意後,AI
應該要如何回應?可能使用者給的資訊不完整,AI 要追問使用者以釐清問題?又或者在
語意理解上有聽不懂的字,得要再次詢問並確認?

這還只是 AI 面對人類自然語言時,其中幾個回應的選項,真實的對話情境可能更加複雜
,而且整個對話過程只要有一個環節正確度不夠高,那 AI 後續也很難準確的回應,只要
有一步錯了,就會對後續對話體驗造成負面影響。

不過好消息是,現在的深度學習技術已經相當成熟,只要餵資料給電腦時,告訴他怎麼樣
是對、怎麼樣是錯,基本上電腦都可以不斷修正(餵的資料也要夠多),再加上現行語言
代表模型的優化,智慧 AI 在特定領域的應用上都有滿不錯的成果。

Jarvis 仍遙遠,AI 的新突破是精準翻譯

聊到這幾年 AI 的重要突破,老師提到三年前 Google 所開發的語言代表模型 BERT(
Bidirectional Encoder Representations from Transformers),當時 BERT 一出現市
面上所有自然語言處理的模型都改採用了它的運作邏輯。

相較於過去的語言模型,通常都是餵指定任務的文字來訓練電腦,BERT 是在給電腦任務
前,先餵它吃很多的文章或書,接著再提供任務給它。以翻譯為例,這就好像讓一般人翻
譯,跟讀過很多書的人來翻譯一樣,讀過很多書的人懂得字彙跟用法,自然翻譯出來的成
品更流暢。

而 BERT 的技術確實也得到相當好的成效,所以擊敗了當時許多正在開發的語言模型,成
為了當前語言模型的基礎。有趣的是,BERT 的前身是一個名為 ELMo(Embeddings from
Language Models,與芝麻街角色名字相同)的語言模型,所以 BERT 的開發者們就用芝
麻街的角色,來為他們開發出來的語言模型命名。

當前 AI 發展的目標,為它建立「人的常識」

雖然說 NLP 領域在商業與學術上都有相當大的發展空間,但陳老師認為,目前要達到人
的「common sense(常識)」對 AI 來說還是非常困難,舉例來說,今天我們跟智慧助理
說我今天要跟某某人吃晚餐,這個時候如果是人類的助理,我們可能會聯想到「吃什麼」
、「要不要聯絡某某人」、「交通方式是?」……等等與飯局相關的問題,但 AI 目前並
沒有辦法執行這麼複雜的互動,還得必須跟 AI 說「幫我訂位」、「幫我叫車」,仍在一
個指令一個動作的狀態,這種 AI「common sense」的建立,可說是目前非常有挑戰性的
項目。

AI 的開發方向——人類的工作輔具

身為 AI 的設計者,陳縕儂老師認為 AI 會成為輔助人類的一部分,雖然說現階段許多人
對於 AI 可以執行我們的工作感到彆扭,但實際上 AI 正在減輕我們的工作量,舉例來說
,像是目前醫院已經有在使用協助診斷的 AI,但這樣的 AI 並不會取代醫生的工作,因
為 AI 只是提供醫生診斷的相關依據,實務上對於病患的判斷最終還是得由醫生來做。

雖然 AI 已在產業中被廣泛利用,但基本上仍以「人機協作」為大宗,雖然能取代部分人
力,但像是創造類型的工作 AI 就幾乎無法獨自完成。至於大家想像中,AI 恐對人類造
成威脅的情節,基本上不會發生,因為 AI 是不會憑空出現意識的,AI 威脅人類的可能
,比較會是人類不當利用造成的風險,所以在未來 AI 的開發上,基本上會往輔助人類的
方向去做應用。

資工領域瞬息萬變,「喜歡新知」很關鍵

談到什麼特質適合來讀資工系,陳縕儂老師認為,數學或是邏輯只是基礎,重要的是「喜
歡接受新知」的特質,因為在資工領域瞬息萬變,資訊更新的相當快速,隨時都會有新東
西出來,如果不喜歡吸收新知識,讀資工系可能會比較痛苦一點。

另外,資工在應用上時常會和不同領域的人做合作,你必須了解對方的需求跟他們的條件
,才能設計出能夠幫別人解決問題的方法,而這也是資工有趣的地方。

陳縕儂老師也和我們分享了在他眼中臺灣學生和外國學生的差異,他認為臺灣學生應用網
路資源自學的能力非常強,而外國學生則是勇於在課堂上和老師提問並討論,各有各的優
點,不過教授也認為由於臺灣學生擅長自己找答案,所以在協作與表達上的可能相較於外
國會比較弱一些,但如果這一塊能做到加強,臺灣的學生其實是非常有競爭力的。

最後老師還告訴我們,當初大學時機器學習與 NLP 領域並不是資工領域的主流,一開始
只是選擇了自己有興趣的領域,也沒想到近幾年 NLP 會變成現在的顯學,他認為自己真
的非常幸運,可以一路延續自己熱愛的主題。

最後的最後,陳縕儂老師建議有意投入資工領域的學員們,可以先了解這個領域需要的先
備知識,像是 Coding 要用到的程式語言、跟 AI 相關的內容則會牽涉到數學,最後當然
就是對知識的熱情和態度,了解之後才比較能判斷這個領域適不適合你,千萬不要因為從
眾而選擇。

--

All Comments

Emma avatar
By Emma
at 2022-05-29T11:19
台大做AI的教授真多
Frederica avatar
By Frederica
at 2022-05-27T06:57
Oliver avatar
By Oliver
at 2022-05-29T17:37
看這老師的新聞,就知道做NLP根本沒幾年。BERT不算
語言模型。
David avatar
By David
at 2022-05-27T06:57
language model在AI領域有嚴格定義的,老師發言錯誤
了。
David avatar
By David
at 2022-05-29T17:37
已加簽
Skylar DavisLinda avatar
By Skylar DavisLinda
at 2022-05-27T06:57
呃 嚴格定義?願聞其詳
Dorothy avatar
By Dorothy
at 2022-05-29T17:37
說陳縕儂老師不懂NLP也太好笑了吧
Kyle avatar
By Kyle
at 2022-05-27T06:57
業內人士的面板都不知道套到哪裡了還跟他認真。
Jacky avatar
By Jacky
at 2022-05-29T17:37
https://scholar.google.com/citations?user=jQLg-_
UAAAAJ&hl=en
Lauren avatar
By Lauren
at 2022-05-27T06:57
陳教授的作品集,自己看吧....看誰比較不懂NLP
Hardy avatar
By Hardy
at 2022-05-29T17:37
ACL EMNLP都發過
Charlotte avatar
By Charlotte
at 2022-05-27T06:57
縮網址
https://reurl.cc/k1nzO3
Yedda avatar
By Yedda
at 2022-05-29T17:37
來朝聖鍵盤 NLP 專家囉!
Oscar avatar
By Oscar
at 2022-05-27T06:57
教授幾年來發幾篇頂會了 真的啥都能酸欸
Jack avatar
By Jack
at 2022-05-29T17:37
鍵盤ai 專家比台大教授厲害?
Wallis avatar
By Wallis
at 2022-05-27T06:57
教授的確也可能講錯啦,但是哪裡說錯你要講出來啊
Mason avatar
By Mason
at 2022-05-29T17:37
BERT 不是最知名的 pretrained language model 嗎
Anonymous avatar
By Anonymous
at 2022-05-27T06:57
還是語言模型是啥= =
Robert avatar
By Robert
at 2022-05-29T17:37
The masked LM is not a Language Model。本來就是
此行常識。一堆人搞不懂在亂說而已。
Oscar avatar
By Oscar
at 2022-05-27T06:57
https://datascience.stackexchange.com/questions/
74115/is-bert-a-language-model#:~:text=No%2C%20B
ERT%20is%20not%20a,sentence%20like%20a%20normal%
20LM.
Tom avatar
By Tom
at 2022-05-29T17:37
BERT is not a traditional language model. It is
a model trained on a masked language model loss,
and it cannot be used to compute the probabilit
y of a sentence like a normal LM
Rebecca avatar
By Rebecca
at 2022-05-27T06:57
學界跟業界的認知,有差距也不用太意外
Kumar avatar
By Kumar
at 2022-05-29T17:37
GPT系列模型才能稱為是語言模型。BERT只是利用LM 的
loss,來學習的序列預測模型。完全不同的理論定義。
Charlotte avatar
By Charlotte
at 2022-05-27T06:57
有興趣做相關研究可以去查,語言模型的定義,看我說
得對不對。
Hedy avatar
By Hedy
at 2022-05-27T06:57
難道wikipedia或一堆學術大老說的語言模型,跟這個
新教授不一樣時,wiki與大老們是錯的嗎。
David avatar
By David
at 2022-05-29T17:37
就是個大眾向的專訪 挑這種刺還酸別人做沒多久超無
聊 反正她學術成就擺在那 應該不介意啦
Agatha avatar
By Agatha
at 2022-05-27T06:57
做學術研究,違反學術界公認定理。結果還有人推喔?
台大沒正常做AI的專家了嗎。
Andrew avatar
By Andrew
at 2022-05-29T17:37
高手很多喔 但入不了閣下法眼吧我猜
Vanessa avatar
By Vanessa
at 2022-05-27T06:57
戰這種沒用的事還是省省吧
William avatar
By William
at 2022-05-29T17:37
阿所以那個留言貼這麼多東西是想糾正什麼
Kelly avatar
By Kelly
at 2022-05-27T06:57
乖乖躲在自己的象牙塔比較好
Sierra Rose avatar
By Sierra Rose
at 2022-05-29T17:37
大家都做一樣的東西不叫做學術,叫補習班好嗎?
Agatha avatar
By Agatha
at 2022-05-27T06:57
支持多元發展,小國家才有機會啦
Noah avatar
By Noah
at 2022-05-29T17:37
斷章加挑刺 特意酸人不會顯得你多厲害
Liam avatar
By Liam
at 2022-05-27T06:57
實際上 Masked LM 裡頭的 LM 就是 language model
Yuri avatar
By Yuri
at 2022-05-29T17:37
除了 Masked LM 以外還有 permutation LM
Steve avatar
By Steve
at 2022-05-27T06:57
傳統的 LM 則是 autoregressive/causal LM
Noah avatar
By Noah
at 2022-05-29T17:37
我不知道離Jarvis多遠 台灣學術離不被外行酸還很遠

陸資違法來台挖角高科技人才,檢調查全國

Necoo avatar
By Necoo
at 2022-05-26T23:49
https://tw.appledaily.com/local/20220526/CA5D6Y6Z55BBZBA3LXQMNRAWFQ/ 陸資違法來台挖角高科技人才 檢調全國同步搜索10公司 中國企業長期在台灣大規模挖角半導體、IC設計等高科技產業人才,砸高薪吸引到許多台 灣技術 ...

GG開獎(AE)

Margaret avatar
By Margaret
at 2022-05-26T23:14
職等:25T 年資:7.7Y 績效:S+ 分紅:121K(2m) 版上開獎文大都是EE 來篇AE開獎拋磚引玉 畢竟在台積,AE也是佔一大部分的人數 - ...

Tech_Job 板規15修訂

Damian avatar
By Damian
at 2022-05-26T22:48
我又來逆風了 板規要怎麼改我是無所謂 只是版主群自己要想清楚 版友們除了推文支持以外 剩下有事情的都是要版主自己處理的 我大部分是推文我也刪不掉,所以有沒有禁刪文我沒差 我要說的是除了PTT某些板 全世界中英文包含對岸論壇沒有人是禁刪文的 自己想想為什麼吧 有在賺錢的管理者都怕麻煩了 更何 ...

為確保iPhone 14新機產能 蘋果要求鴻海擴

Suhail Hany avatar
By Suhail Hany
at 2022-05-26T21:30
https://www.ntdtv.com.tw/b5/20220526/video/329807.html 為確保iPhone 14新機產能 蘋果要求鴻海擴大備貨量 【新唐人亞太台 2022 年 05 月 26 日訊】根據日經新聞報導,中共封控導致蘋果今年發 佈的4款iPhone 14新機中,至少有一款 ...

科技業工作的選擇 代po

Ula avatar
By Ula
at 2022-05-26T21:22
小弟最近錄取了兩家工作 小弟從非本科系轉職到科技業及半導體 最近錄取了高雄- 華東科技半導體業-封裝設備工程師 新應材 半導體化學材料業 -研發助理工程師 華東科技-31~32k 上班時間 一個禮拜上五天 排修 8小時 之後輪三班 35k-38k 分紅一個月 年終一個月 新應材-36k 上班時間 週一到周 ...