突破1奈米製程超越矽極限!台大攜台積電 - 工程師
By George
at 2021-05-19T16:48
at 2021-05-19T16:48
Table of Contents
突破1奈米製程超越矽極限!台大攜台積電、MIT 研發二維材料+鉍
https://bit.ly/3bCE4Xq
半導體1奈米製程新突破!台大攜手台積電、美國麻省理工學院(MIT),研究發現二維材
料結合半金屬鉍(Bi)能達到極低的電阻,接近量子極限,有助於實現半導體 1 奈米以
下的艱鉅挑戰。
由於,目前Si矽基半導體主流製程,已進展至 5 奈米及 3 奈米節點,晶片單位面積能容
納的電晶體數目,也將逼近半導體主流材料「矽」的物理極限,晶片效能無法再逐年顯著
提升。於是,全球科學界都在積極尋找其他的可能材料;而一直以來科學界都對二維材料
寄予厚望,卻苦於無法解決二維材料高電阻、及低電流等問題。
為此,台大聯手台積電、MIT自2019 年展開跨國研究,首先由 MIT 團隊發現在二維材料
上混搭半金屬鉍的電極,能大幅降低電阻並提高傳輸電流;隨後台積電研究將鉍沉積製程
進行優化,台大團隊並運用氦離子束微影系統(Helium-ion beam lithography)將元件
通道成功縮小至奈米尺寸,終於獲得這項突破性的研究成果。
台大電機系暨光電所吳志毅教授表示,這項研究發現,在使用鉍為接觸電極的關鍵結構後
,二維材料電晶體的效能不但與矽基半導體相當,又有潛力與目前主流的矽基製程技術相
容,實有助於未來突破摩爾定律的極限。雖然,目前還處於研究階段,但該成果能替下世
代晶片提供省電、高速等絕佳條件,未來可望投入人工智慧、電動車、疾病預測等新興科
技的應用。
博士沈品均則指出,過去半導體使用三維材料,物理特性與元件結構發展到 3 奈米節點
,這次研究改用二維材料,厚度可小於 1 奈米(1~3 層原子厚),更逼近固態半導體材
料厚度的極限。而半金屬鉍的材料特性,能消除與二維半導體接面的能量障礙,且半金屬
鉍沉積時,也不會破壞二維材料的原子結構。
--
https://bit.ly/3bCE4Xq
半導體1奈米製程新突破!台大攜手台積電、美國麻省理工學院(MIT),研究發現二維材
料結合半金屬鉍(Bi)能達到極低的電阻,接近量子極限,有助於實現半導體 1 奈米以
下的艱鉅挑戰。
由於,目前Si矽基半導體主流製程,已進展至 5 奈米及 3 奈米節點,晶片單位面積能容
納的電晶體數目,也將逼近半導體主流材料「矽」的物理極限,晶片效能無法再逐年顯著
提升。於是,全球科學界都在積極尋找其他的可能材料;而一直以來科學界都對二維材料
寄予厚望,卻苦於無法解決二維材料高電阻、及低電流等問題。
為此,台大聯手台積電、MIT自2019 年展開跨國研究,首先由 MIT 團隊發現在二維材料
上混搭半金屬鉍的電極,能大幅降低電阻並提高傳輸電流;隨後台積電研究將鉍沉積製程
進行優化,台大團隊並運用氦離子束微影系統(Helium-ion beam lithography)將元件
通道成功縮小至奈米尺寸,終於獲得這項突破性的研究成果。
台大電機系暨光電所吳志毅教授表示,這項研究發現,在使用鉍為接觸電極的關鍵結構後
,二維材料電晶體的效能不但與矽基半導體相當,又有潛力與目前主流的矽基製程技術相
容,實有助於未來突破摩爾定律的極限。雖然,目前還處於研究階段,但該成果能替下世
代晶片提供省電、高速等絕佳條件,未來可望投入人工智慧、電動車、疾病預測等新興科
技的應用。
博士沈品均則指出,過去半導體使用三維材料,物理特性與元件結構發展到 3 奈米節點
,這次研究改用二維材料,厚度可小於 1 奈米(1~3 層原子厚),更逼近固態半導體材
料厚度的極限。而半金屬鉍的材料特性,能消除與二維半導體接面的能量障礙,且半金屬
鉍沉積時,也不會破壞二維材料的原子結構。
--
Tags:
工程師
All Comments
By Blanche
at 2021-05-21T08:16
at 2021-05-21T08:16
By Necoo
at 2021-05-21T10:14
at 2021-05-21T10:14
Related Posts
富士康、立訊關閉越南工廠
By John
at 2021-05-19T15:15
at 2021-05-19T15:15
有沒有北部大型企業還沒分流上班的八卦?
By Agnes
at 2021-05-19T14:28
at 2021-05-19T14:28
兩度停電 總統促重新檢視電力調度
By Frederica
at 2021-05-19T12:46
at 2021-05-19T12:46
公司要求出差
By Irma
at 2021-05-19T11:43
at 2021-05-19T11:43
共用無塵衣會不會是下一個破口
By Ingrid
at 2021-05-19T10:24
at 2021-05-19T10:24